A parallel method for time-discretization of parabolic problems based on contour integral representation and quadrature
نویسندگان
چکیده
We treat the time discretization of an initial-value problem for a homogeneous abstract parabolic equation by first using a representation of the solution as an integral along the boundary of a sector in the right half of the complex plane, then transforming this into a real integral on the finite interval [0, 1], and finally applying a standard quadrature formula to this integral. The method requires the solution of a finite set of elliptic problems with complex coefficients, which are independent and may therefore be done in parallel. The method is combined with spatial discretization by finite elements.
منابع مشابه
A High Order Parallel Method for Time Discretization of Parabolic Type Equations Based on Laplace Transformation and Quadrature
We consider the discretization in time of a parabolic equation, using a representation of the solution as an integral along a smooth curve in the complex left half plane. The integral is then evaluated to high accuracy by a quadrature rule. This reduces the problem to a finite set of elliptic equations, which may be solved in parallel. The procedure is combined with finite element discretizatio...
متن کاملA parallel method for time discretization of parabolic equations based on Laplace transformation and quadrature
We consider the discretization in time of an inhomogeneous parabolic equation in a Banach space setting, using a representation of the solution as an integral along a smooth curve in the complex left half-plane which, after transformation to a finite interval, is then evaluated to high accuracy by a quadrature rule. This reduces the problem to a finite set of elliptic equations with complex coe...
متن کاملVARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT
The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...
متن کاملEfficient quadrature rules for a class of cordial Volterra integral equations: A comparative study
A natural algorithm with an optimal order of convergence is proposed for numerical solution of a class of cordial weakly singular Volterra integral equations. The equations of this class appear in heat conduction problems with mixed boundary conditions. The algorithm is based on a representation of the solution and compound Gaussian quadrature rules with graded meshes. A comparative stud...
متن کاملOn Fully Discrete Galerkin Approximations for Partial Integro-differential Equations of Parabolic Type
The subject of this work is the application of fully discrete Galerkin finite element methods to initial-boundary value problems for linear partial integro-differential equations of parabolic type. We investigate numerical schemes based on the Padé discretization with respect to time and associated with certain quadrature formulas to approximate the integral term. A preliminary error estimate i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Comput.
دوره 69 شماره
صفحات -
تاریخ انتشار 2000